A Privacy Protection Model for Patient Data with Multiple Sensitive Attributes

نویسندگان

  • Tamas S. Gal
  • Zhiyuan Chen
  • Aryya Gangopadhyay
چکیده

The identity of patients must be protected when patient data are shared. The two most commonly used models to protect identity of patients are L-diversity and K-anonymity. However, existing work mainly considers data sets with a single sensitive attribute, while patient data often contain multiple sensitive attributes (e.g., diagnosis and treatment). This article shows that although the K-anonymity model can be trivially extended to multiple sensitive attributes, the L-diversity model cannot. The reason is that achieving L-diversity for each individual sensitive attribute does not guarantee L-diversity over all sensitive attributes. We propose a new model that extends L-diversity and K-anonymity to multiple sensitive attributes and propose a practical method to implement this model. Experimental results demonstrate the effectiveness of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy in Cyberspace

Information technology provides better medical services and so appropriate conditions for misuse of personal information. Medical information is an important part of sensitive computer data. For the growing of information technology. Protection of patient`s privacy in cyberspace has become one of the main matters of medical law. To this end. The rules are set out in international documents incl...

متن کامل

(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model

Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...

متن کامل

Analyzing Tools and Algorithms for Privacy Protection and Data Security in Social Networks

The purpose of this research, is to study factors influencing privacy concerns about data security and protection on social network sites and its’ influence on self-disclosure. 100 articles about privacy protection, data security, information disclosure and Information leakage on social networks were studied. Models and algorithms types and their repetition in articles have been distinguished a...

متن کامل

A Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes

Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...

متن کامل

ارایه یک روش جدید انتشار داده‌ها با حفظ محرمانگی با هدف بهبود دقّت طبقه‌‌بندی روی داده‌های گمنام

Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJISP

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008